Multiple Sclerosis 2023 Brain Health Alliance

Gregory F. Wu, MD, PhD Department of Neurology Department of Pathology & Immunology Washington University in St. Louis

Disclosures

• Research

NIH, VA, NMSS, EMD Serono, Biogen, Roche

Consulting

Sage, Progentec, Sangamo, Novartis, Roche, Alumis, Vulcan Biosciences

Speaking

EMD Serono

Editorial

Neurology Neuroimmunology & Neuroinflammation Journal of Neuroimmunology

Testimony

Department of Justice

Outline

- MS Overview
- Adaptive Immunity in MS
- Example of Current Therapies
- CSF Investigations
- Emerging MS Therapies
- Questions

The "Father of Multiple Sclerosis" Sclerose en plaque

Jean Martin Charcot (1825–93)

Triad:

- Nystagmus
- Intention Tremor
- Dysarthria

Sclerose en plaques . - MR Valpian . 1868. 24. avril - moelle- Sans preparation .

Zalc, B. Brain 2018: 141; 3482–3488

Gross examination (autopsy)

Microscopic examination

CSF Analysis in MS

- Cell count (typically < 50 WBC)
- WBC differential (typically ~ 80-90% L)
- "Trotter studies"
 - IgG Index
 - Albumin Index
 - IgG synthesis rate
 - Oligoclonal bands
- Other routine values for exclusion of other diseases (protein, VDRL, etc.)

Isolelectric Focusing & Immuno-fixation

A Model for Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis (EAE)

Current Protocols in Neuroscience (2001) 9.7.1-9.7.11

Adaptive Immunity

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis

Stephen L. Hauser, M.D., Emmanuelle Waubant, M.D., Ph.D., Douglas L. Arnold, M.D., Timothy Vollmer, M.D., Jack Antel, M.D., Robert J. Fox, M.D., Amit Bar-Or, M.D., Michael Panzara, M.D., Neena Sarkar, Ph.D., Sunil Agarwal, M.D., Annette Langer-Gould, M.D., Ph.D., and Craig H. Smith, M.D., for the HERMES Trial Group*

Table 3. (Continued.)				
End Point	Placebo (N=35)	Rituximab (N = 69)	P Value	
Clinical				
Relapses between wk 0 and wk 48 — no. of patients (%)				
0 relapses	21 (60.0)	55 (79.7)		
1 relapse	11 (31.4)	8 (11.6)		
2 relapses	1 (2.9)	5 (7.2)		
≥3 relapses	2 (5.7)	1 (1.4)		
Mean no. of relapses (range)	0.54±0.82 (0–3)	0.30±0.67 (0–3)		
Annualized rate of relapse from wk 0 to wk 24				
Total no. of relapses	13	11		
Total subject-years of follow-up	15.9	31.3		
Unadjusted rate	0.8	0.4		
Adjusted rate (90% CI)**	0.8 (0.53–1.31)	0.4 (0.23–0.60)	0.04††	
Mean <u>‡‡</u>	0.8±1.20	0.3±0.86		
Median	0	0		
Annualized rate of relapse from wk 0 to wk 48			0.08††	
Total no. of relapses	19	21		
Total subject-years of follow-up	27.2	59.7		
Unadjusted rate	0.7	0.4		
Adjusted rate (90% CI)**	0.7 (0.46–1.12)	0.4 (0.24–0.57)		
Mean‡‡	0.7±1.05	0.4±0.81		
Median	0	0		

Outcome Measures in MS Trials

T2 lesion volume

Gd+ lesions

EDSS

- 1. Timed 25-Foot Walk (T25FW)
- 2. 9-Hole Peg Test (9HPT)
- 3. Paced Auditory Serial Addition Test (PASAT)

Panel A shows the mean total number of gadolinium-enhancing lesions by week, and Panel B shows the mean number of new gadolinium-enhancing lesions by week. Missing values were imputed by averaging the available data. The baseline MRI was obtained at week –4.

B Cell Depletion Therapy in MS

Rituxan – patent expired in 2015 Ocrelizumab – patent ? **Phase I**: Researchers test a new drug or treatment in a small group of people for the first time to evaluate its safety, determine a safe dosage range, and identify side effects.

Phase II: The drug or treatment is given to a larger group of people to see if it is effective and to further evaluate its safety.

Phase III: The drug or treatment is given to large groups of people to confirm its effectiveness, monitor side effects, compare it to commonly used treatments, and collect information that will allow the drug or treatment to be used safely.

ORIGINAL ARTICLE

Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis

S.L. Hauser, A. Bar-Or, G. Comi, G. Giovannoni, H.-P. Hartung, B. Hemmer, F. Lublin, X. Montalban, K.W. Rammohan, K. Selmaj, A. Traboulsee, J.S. Wolinsky, D.L. Arnold, G. Klingelschmitt, D. Masterman, P. Fontoura, S. Belachew, P. Chin, N. Mairon, H. Garren, and L. Kappos, for the OPERA I and OPERA II Clinical Investigators*

Hauser et al, N Engl J Med. 2017 Jan 19;376(3):221-234

Epstein-Barr Virus & MS

Age of EBV Infection and MS Risk

Immuno-pathophysiology of MS

Causality vs Therapy/Prevention

"Moderna Starts Human Trials Of mRNA Vaccine For Virus That Likely Causes Multiple Sclerosis"

"...most cases of MS could be prevented by stopping infection with EBV, as well as opening up the possibility of a cure for MS by 'targeting EBV'"

https://www.forbes.com/sites/roberthart/2022/01/14/moderna-starts-human-trials-of-mrna-vaccine-for-virus-that-likely-causes-multiple-sclerosis/?sh=4ca948c51a04

Immuno-pathophysiology of MS

Giovannoni Neurotherapeutics (2017) 14:874-887

Cladribine Efficacy for Relapsing MS

^aPooled data from CLARITY, CLARITY EXT, and PREMIERE; figure includes treatment gap. Visits with sample size \geq 30 are displayed.

Giovannoni. Neurotherapeutics (2017) 14:874-887

Deisenhammer et al Frontiers Immunol. (2019) 10 | Article 726

Immuno-pathophysiology of MS

Bruton's Tyrosine Kinase Inhibition

TABLE. COMPARISON OF BRUTON TYROSINE KINASE INHIBITOR PHARMACOLOGY				
	Evobrutininb (M-251) (PRN2246)	Tolebrutinib (SAR442168)	Orelabrutinib (ICP-022)	Fenebrutinib (GDC-0853)
Structure	$(\mathbf{r}_{1}, \mathbf{r}_{2}, r$	$ \begin{array}{c} $		
Molecular weight	429.51 ²⁴	455.51 ²⁴	427.9 ²⁵	664.80 ²⁴
Chemical bond with BTK10	Covalent, irreversible	Covalent, irreversible	Covalent, irreversible	Noncovalent, reversible
Inhibition site	Kinase domain C481 residue	Kinase domain C481 residue	Kinase domain C481 residue	SH2 domain K430 residue, kinase domain M 477 and D539 residues
IC50 (nM) ^a	37.97	0.4-0.79	1.6	2.37
Inhibition of other tyrosine kinases	Minimal, targets BTK selectively ⁷	Binds 12 of 250 tyrosine kinases at 1 mcMol ⁹	Best selectivity, BTK only; > 90% inhibition ²⁵	Targets 2 of 286 kinases ⁷
Abbreviations: BTK, Bruton tyrosine kinase; BTKI, BTK inhibitor; IC50, half-maximal concentration. ^a The IC50 for the BTKIs of interest vary depending on the type of used cells to determine the inhibition constant; however different papers report comparable values.				

Bruton's Tyrosine Kinase Inhibition

		Dose received in the DBP ^a					
OLE period	Statisti cs	Placebo/ Evobrutinib 25 mg QD (n=39)	Evobrutinib 25 mg QD (n=39)	Evobrutinib 75 mg QD (n=42)	Evobrutinib 75 mg BID (n=44)	DMF (n=49)	Total (n=213)
OLE W0 to switch from evobrutinib	ARR	0.30	0.22	0.13	0.16	0.15	0.19
75 mg QD to 75 mg BID dose ^b	95% CI	0.15-0.53	0.09-0.43	0.04-0.31	0.07-0.34	0.05-0.32	0.13-0.26
From time of switch to evobrutinib 75 mg BID until OLE W132 ^b	ARR	0.10	0.13	0.07	0.11	0.10	0.10
	95% CI	0.03-0.22	0.05-0.27	0.02-0.18	0.04-0.23	0.04-0.22	0.07-0.14
OLE W0 to OLE W132	ARR	0.18	0.17	0.09	0.13	0.12	0.14
	95% CI	0.10-0.29	0.09-0.28	0.04-0.18	0.07-0.22	0.06-0.21	0.11-0.17

Immuno-pathophysiology of MS

Efficacy of pMHCII-CAR T cells in EAE

MOG₃₅₋₅₅ pMHCII-CAR T cells can ameliorate EAE

Chimeric Antigen Receptor (CAR) T Cell Therapies

Traditional CAR T cells

Table 1. The list of clinical trials of chimeric antigen receptor (CAR)-T cell therapy beyond oncology.

Disease	Target/Approach	NCT, Current Status	
Mucosal-Dominant Pemphigus Vulgaris	Clone-specific anti-Dsg3 CAAR-T	NCT04422912, Phase I recruiting	
Generalized Myasthenia Gravis	Non-specific anti-BCMA CAR-T	NCT04146051, Phase I, II recruiting	
Systemic Lupus Erythematosus	Non-specific anti-CD19 CAR-T	NCT03030976, Phase I, unknown	
Neuromyelitis Optica Spectrum Disorder	Non-specific tandem anti-CD19 and anti-CD20 CAR-T	NCT03605238, Phase I, withdrawn	
	Non-specific anti-BCMA CAR-T	NCT04561557, Phase I recruiting	
Human Immunodeficiency Virus	Anti-gp120 BNAbs based CAR-T	NCT03240328, Phase I recruiting	
,		NCT03980691, Phase I recruiting	
	Anti-gp120 dual CAR-T	NCT04648046, Phase I not yet recruiting	
COVID-19	Bispecific anti-ACE2 and anti-NKG2D CAR-NK	NCT04324996, Phase I, II recruiting	

Poorebrahim et al Oncogene 40: 421-35 (2021)

Zmievskaya et al. Biomedicines. 2021;9(1):59.

Bone marrow transplantation for MS

• "Stem cell therapy"

 BEAT-MS Trial: compares 'best available' therapy

Summary

- MS is a heterogeneous disease
- Abundant disease-modifying therapies are available
- Reverse-translation of MS medications sheds light on pathophysiology
- Numerous emerging therapies for MS are on the horizon

Mechanisms of EBV

"The researchers say that the association between EBV and MS risk was too strong to be explained by any other known MS risk factors. The findings strongly suggest that EBV is part of the chain of events that leads to most cases of MS. However, EBV in itself is not sufficient to trigger MS."

"Epstein-Barr virus does not cause MS, but the immune response to this virus is different in MS patients, and our hypothesis is that the altered immune response contributes to the development and progression of the disease."

"Professor Alberto Ascherio stressed that EBV is necessary, but not sufficient, for someone to develop MS. In other words, you have to be infected with EBV to get MS, and the other risk factors associated with MS only become relevant in the presence of EBV."

https://www.nih.gov/news-events/nih-research-matters/study-suggests-epsteinbarr-virus-may-cause-multiplesclerosis#:~:text=The%20researchers%20say%20that%20the,not%20sufficient%2 0to%20trigger%20MS. https://doi.org/10.1016/j.msard.2022.104158