

Investigating multiple sclerosis using advanced MRI

Dr Myrte Strik

Melbourne Brain Centre Imaging Unit BHAVI MS Symposium June 2023

Melbourne Brain Centre Imaging Unit

Address of the second

12 11

SIEMENS

E

FLOREY

22 22

Positron Emission Tomography - Computed Tomography (PET-CT)

Ultra-high field Magnetic Resonance Imaging (7 Tesla MRI)

PET-CT Siemens VISION EDGE 600

- High sensitivity and resolution PET tracer 3D measurement available for:
 - o ¹⁸F Amyloid in Alzheimer's
 - o ¹⁸F TAU in CTE in Athletes
 - ¹⁸F FDOPA in Parkinson's
 - o ¹⁸F AV133 in long COVID
 - o ²²Na for Plants sciences
- Raw data storage
- Dual energy Low dose CT
- CT for material science, digitising museum artefacts, and 3D Printing

CT of mummified Egyptian boy

Our facility houses and operates

Positron Emission Tomography - Computed Tomography (PET-CT)

Ultra-high field Magnetic Resonance Imaging (7 Tesla MRI)

Siemens Magnetom 7T plus VE12U: hardware & software

- Head coil: Single-channel transmit & 32-channel receive parallel 8-channel transmit & 32-channel receive (Nova Medical)
- Eye coil (MRI Tools 1Tx/6Rx)
- Cervical Spine coil (Rapid 1Tx/8Rx)
- Sodium coil (QED 1Tx/1Rx dual tuned H/Na)
- Modular coils: carotids, spine & cardiac (MRI Tools 1Tx/4Rx per module)
- Physiological monitoring pulse & respiration
- FMRI response button boxes (Cedris lumina 2x2, 2x4)
- Skin conductance recording
- MRI Compatible LED monitor 120Hz
- Headphones for ear protection and audio communication
- MRI compatible glasses (+6 to -6 dioptre correction)
- AD instruments: GSR amp & Neuro amp
- Real-time fMRI neurofeedback (Turbo Brain Voyager)
- Eye tracking (EyeLink)

Imaging modalities at the 7T MRI scanner

Multiple sclerosis

MACHINE TON 77 MIL

12 11

SIEMENS.

E. wildows

FLOREY

.....

Lesions – typical hallmark
 Inflammation
 Demyelination

2) AtrophyDegeneration / shrinkage ofbrain tissue

White and grey matter pathology¹

Demyelination in white matter - Demyelination in cortex

Clinical course

Multifocal, widespread and

heterogeneous character of

pathological processes +

clinical course variable

Motor disabilities in MS

Motor impairments are very common

Symptoms⁴

- Balance
- Walking
- Coordination
- Muscle weakness
- Spasticity abnormal muscle tightness due to prolonged muscle contraction
- Tremor involuntary, rhythmic muscle contraction
- Clumsiness

Impact on quality of life and independence

- MS leads to progressive loss of both upper and lower¹
 - Up till 85% experience within 10 -15 years walking problems²
 - 60% within first year impaired hand function³
- Though, most previous research focussed
 - on overall disability
 - EDSS clinical rating scale
 - weighted towards mobility
 - other subscales cognition, bowel bladder etc
- Upper limb disability especially understudied
 - Presents early on
 - Self-reported as impairing and restricting by more than 50%²
- Limited correlation between limbs⁴

2. Expanded Disability Statis Scale (EDSS)

- used clinic & research
- 8 functional subsystems
- overall disability (weighted to mobility)

5. Laboratory gait analysis

MRI and diagnosis

Diagnosis Criteria

- Clinical observations
- Oligoclonal bands in the cerebrospinal \bullet fluid
- MRI dissemination of lesions \bullet
 - In time
 - In space (1 or > in at least 2 areas)
 - periventricular
 - juxtacortical
 - Infratentorial (cerebellum) •
 - spinal cord •

Conventional MRI

- Diagnosis
- Monitoring disease progression
- Clinical trails (outcome lesions, relapses) \bullet

Classical hallmark – WM lesions

T1-CE

Active lesions inflammatory phase

Inactive lesions (black hole)

Classical hallmark of MS: white matter lesions

- Important diagnosis and progression
- Relation between lesion load and clinical disability is moderate

Clinical-radiological paradox

- Relapsing-remitting MS
- Over a year clinically stable

Look beyond WM lesions and conventional MRI sequences

Besides white matter lesions (T1 / T2 / FLAIR)

grey matter lesions (DIR, SPIR)

Types of lesions

- Active: different patterns
- Chronic lesions
 - Chronic inactive
 - Remyelination
 - Chronic active = smouldering (T2*, Phase, QSM)

Besides conventional MRI → 7T and advanced MRI techniques

- Different types of lesions (smouldering)
- central vein (diagnosis)

Time (months)

12

Nature Reviews | Neurolo

Strik et al – Brain Communications - 2021 Axonal loss in major motor tracts is associated with impaired motor performance in minimally disabled MS patients

The microstructural changes in the brain

Conventional imaging

Lesions relates moderately to disability

Atrophy

Diffusion Tensor Imaging

transfer of water molecules is described with a tensor

Limitations

- Assumes single fibre population
- Many voxels contain partial volume fraction of 2 or more fibre populations
- Crossing fibers in 90% WM voxels²

Constrained spherical deconvolution

Sensitive to white matter axonal degeneration

Provide estimation of distribution of fibers in each voxel (FOD)

Fibre-specific measures

Fixel = fibre population within a voxel
Fixel-specific measures:
 Fibre density (FD)

Fibre cross-section (FC)

Fibre density and cross-section (FDC)

 FOD
 Fixels

Normal fibre bundle

Compare degree of axonal degeneration of motor tracts to motor performance using novel axonal markers

Participants

- 28 MS patients no to minimal disability (EDSS <4, pyramidal & cerebellar function ≤2)
- 17 healthy controls

Ultra-high field MRI (7T)

- Whole body Magnetom 7T MRI (Siemens, Erlangen, Germany), combined single-channel transmit & 32-channel receive head coil (Nova Medical, Wilmington MA, USA)
- Comprehensive study
 - Resting-state fMRI (TR=0.8 , 1.6 mm iso)
 - Task fMRI force matching task (TR= 1.7, 1.24 mm iso)
 - QSM (9 echoes, 0.75 mm)
 - Structural (0.9 mm iso)
 - Diffusion (multi-slice 2D spin-echo EPI sequence (CMRR, University of Minnesota)¹

b=3000 s/mm2

Coverage	TR	TE	MB	Acceleration GRAPPA	slices	Reso	b-shells	Directions	B0 images PA	Time
Whole brain	7000 ms	74.4 ms	2	3	128	1.24 mm iso	1000 s/mm² 2000 s/mm² 3000 s/mm²	103	6	13 mins

¹VU et al. (2015). High resolution whole brain diffusion imaging at 7T for the Human Connectome Project.

3D video tracking gait assessment (Prof Mary Galea and Dr Eduardo Cofré Lizama)

Stance, Stride length, Step width, Single support, Double support

Upper performance during MRI task

Pre-processing pipeline - multi-shell multi-tissue CSD (MRtrix3)

Whole brain tractography and motor tracts

whole brain probabilistic fibre tractography (20 million seeds randomly assigned)

The corticospinal tracts: subdivide into different tracts

1. Primary motor & somatosensory tracts

2. Upper limb and lower limb tracts

The interhemispheric tracts and cerebello-thalamic tracts

Corticospinal tracts: white matter atrophy in MS patients

Loss of FC and FDC in early MS minimal disability

0.32

Interhemispheric and cerebello-thalamic tracts

The corticospinal tract

The interhemispheric tracts

WM damage in 20.2% of M1 tracts 27.3% of S1 tracts WM damage in **35.7% of lower limb tracts** 29.7% upper limb tracts WM damage observed in 4.6% of M1 tracts <u>10.9% S1 tracts</u>

Relation to motor behavior

Upper limb force error (fMRI task)

• Greater upper limb force error was associated with axonal loss

Gait pattern parameters

- CST damage was associated with shorter stance and smaller step width
- Interhemispheric damage was associated with longer double support.

A sensitive measure of gait deterioration is stability = Local dynamic stability (LDE; or local divergence)

Original Research Paper

MSJ

Gait stability reflects motor tracts damage at early stages of multiple sclerosis

L Eduardo Cofré Lizama⁽¹⁾, Myrte Strik, Anneke Van der Walt⁽¹⁾, Trevor J Kilpatrick, Scott C Kolbe⁽¹⁾ and Mary P Galea

Abstract

Background: Gait in people with multiple sclerosis (PwMS) is affected even when no changes can be observed on clinical examination. A sensitive measure of gait deterioration is stability; however, its cor-

Correspondence to: L E Cofré Lizama School of Allied Health,

Multiple Sclerosis Journal 2022, Vol. 28(11) 1773–1782

DOI: 10.1177/

© The Author(s), 2022.

Article reuse guidelines: sagepub.com/journalspermissions

Axonal loss in 40 clinically stable patients over 1.5 years

- 1. Fibre specific metrics
- 2. Retinal nerve fibre layer thickness (RNFLT)
- 3. Atrohpy

Fibre specific measures were

- 4 times more sensitive to change than RNFLT
- 7 times more sensitive to change than brain atrophy

.

JOURNAL ARTICLE

Longitudinal tracking of axonal loss using diffusion magnetic resonance imaging in multiple sclerosis

Frederique M. Boonstra, Meaghan Clough, Myrte Strik, Anneke van der Walt, Helmut Butzkueven, Owen B. White, Meng Law, Joanne Fielding, Scott C. Kolbe 🕿

Brain Communications, Volume 4, Issue 2, 2022, fcac065, https://doi.org/10.1093/braincomms/fcac065 Publiched: 17 March 2022 Article bistory -

Strik et al - Human Brain Mapping 2021 Functional correlates of motor control impairments in MS: a 7T task fMRI study

- Both upper and lower limbs are affected
- Previous fMRI task research
 - Focused predominantly on hand function¹
 - Using simple tasks¹ --> complex sensorimotor tasks required for daily functioning
- No studies that directly compare upper and lower limb motor control using an identical task
- Use of clinical field strengths

Functional imaging at higher field

7T higher accuracy and sensitively compared to 3T Hale et al., 2010

3 Tesla: 96 subjects

Less people, highly valuable, recruitment difficulties (disorders), \$\$

7 Tesla: 28 subjects

AIM: Using 7T and complex motor task, to detect subtle activation changes underlying both limbs particularly early disability stages

Participants

- 28 MS patients no to minimal disability (EDSS <4, pyramidal & cerebellar function ≤2)</p>
- 17 healthy controls

Ultra-high field MRI (7T)

- Whole body Magnetom 7T MRI (Siemens, Erlangen, Germany), combined single-channel transmit & 32-channel receive head coil (Nova Medical, Wilmington MA, USA)
- Comprehensive study:
 - Resting-state fMRI (TR=0.8 , 1.6 mm iso)
 - QSM (9 echoes, 0.75 mm)
 - MP2RAGE (0.9 mm iso)
 - Diffusion (multi-slice 2D spin-echo EPI sequence (CMRR, University of Minnesota)
- Force matching task fMRI 2 runs (sequence CMRR, University of Minnesota)¹

Coverage	TR	TE	MB	GRAPPA	slices	Reso	Volumes	lmage matrix	Time
Whole brain	1700 ms	34.4 ms	6	2	120	1.24 mm iso	165	168 x 168	6:40

¹Moeller, et al. (2010). Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. **63**(5), 1144–115

0.5

CoV 0

Visually guided force-matching task

С

Two runs of functional MRI

- Upper limb
- Lower limb

Task¹

- Low force contraction ankle or hand ٠
- Cuff over dorsum foot or hold in hand ٠
- 4 contraction blocks, 5 rest
- Complex task \rightarrow Practice session ٠

Functional motor performance measures

Measures of performance

1. Lag

٠

- Delay task cue and response ightarrow latency with processing speed
 - ms, cross correlation

2. Error in the force

- How accurate one is performing task ightarrow integration
 - Error in y direction, RMS (N)

Results

- Worse lower limb performance MS
- No difference upper limb performance
- No correlation upper and lower limb performance

Main effect upper and lower limb task

Multiple Sclerosis Healthy controls Overlap

Main effect upper and lower limb task

Precentral gyrus

Posterio

Motor control impairments in MS are related to dysfunctions in visuomotor integration

Lower activation during lower limb task in

- visuomotor attention / location of objects in space / integration proprioception and vision
- occipital cortex (primary visual processes) and middle temporal visual area (processing of motion)
- Cerebellar regions involved in sensorimotor processes
- → Clinically relevant (correlation to lesion load, force error, EDSS)

Upper limb task

- Despite no differences in upper limb task performance
- Lower inferior occipital cortical activation

- Minimally disabled MS patients showed during complex hand and foot tracking
 - subtle impairments in lower limb movements
 - Altered upper and lower limb brain activation
 - No correlations between upper and lower limb disabilities
- These results suggests partially divergent functional mechanisms underlying upper and lower disability progression
 - timing events?
 - different mechanisms (upper complex, other networks in the brain and spinal cord)?
 - more accurate measures needed?
- Next longitudinal, larger cohort

Thank you

